Wednesday, 21 June 2017

Hunting For Daytime NDBs In CLE 220

AP-378 Mayne Island, BC


It's hard to believe but this coming weekend will see another CLE challenge!





No need however, to stay up until the wee hours for this one, as CLE220 is a mid-day affair ... just log what you are able to hear during the day from your location. The entire band is fair-game as well, from 190 - 1740kHz.

Everyone is encouraged to send their logs (see below) so the RNA / REU NDB databases can be kept as up-to-date as possible.

I know that I won't have any trouble hearing AP-378 shown above since it's only about 3/4 mile from my antenna! I'm always curious just how far it can be heard during the day and would encourage listeners on the west coast to have a good listen for it and please let me know if you can hear it.

For those unfamiliar with this monthly activity, a 'CLE' is a 'Co-ordinated Listening Event', as NDB DXers around the world focus their listening time  usually on one small slice of the NDB spectrum.

When tuning for NDBs, put your receiver in the CW mode and listen for the NDB's CW identifier, repeated every few seconds. With your receiver in the CW mode, listen for U.S. NDB identifiers approximately 1 kHz higher or lower than the published transmitted frequency since these beacons are tone-modulated with a 1020 Hz tone approximately.
For example, 'AA' near Fargo, ND, transmits on 365 kHz and its upper sideband CW identifier is tuned at 366.025 kHz while its lower sideband CW ident can be tuned at 363.946 kHz. Its USB tone is actually 1025 Hz while its LSB tone is 1054 Hz.

Often, one sideband will be much stronger than the other so if you don't hear the first one, try listening on the other sideband.

Canadian NDBs normally have an USB tone only, usually very close to 400 Hz. They also have a long dash (keydown) following the CW identifier.

All NDBs heard in North America will be listed in the RNA database (updated daily) while those heard in Europe may be found in the REU database. Beacons heard outside of these regions will be found in the RWW database.

From CLE organizer Brian Keyte, G3SIA, comes the usual 'heads-up':

Hi all

SUMMER MIDDAY EVENT

How many normal NDBs can you log around midday?

In this event we can probably cheat the QRN and hardly hear any (but if
you do have a midday storm coming overhead, disconnect and switch off
immediately of course)

Listening around midday is a good way to check our listening stations and
to find out if changes really have made improvements in reception.
Or maybe you could try the CLE listening from a 'field' location instead of
(please, NOT as well as) from home?

Days: Fri. 23 June - Mon. 26 June
Times: Within 2 hours of ‘real’ Midday (see below)
QRG: 190 - 1740 kHz
NDBs Normal NDBs only, plus any UNIDs
(not DGPS, NAVTEX or Amateur)

### IMPORTANT ## If your house clocks have moved one hour
forward for 'summer time' (or 'daylight saving'), your listening
times each day will be BETWEEN 11 IN THE MORNING
and 3 IN THE AFTERNOON (15:00) on your LOCAL clocks.

If your clocks were NOT changed, maybe in Arizona (?), or
in the Southern Hemisphere where it is now mid-winter,
your times each day will be from 10 a.m. to 2 p.m. LOCAL.

(The above matches our agreed definition for daytime listening)
Of course, all our logs will show UTC times, as always.

Our usual simple log-making 'rules' apply:
Post your CLE log to the List in a plain text email if possible please,
with CLE220 at the start of its title, showing on each log line:

# The Day No.(e.g. ‘23’) or the full date (e.g. ‘2017-06-23’)
and UTC (the day changes at 00:00 UTC).
# kHz - the nominal published frequency, if known.
# The Call Ident.

Please show those main log items FIRST, with any other details such as
location and distance LATER in the same line.

Don't forget to give your own location and brief details of your equipment.
It also makes good reading if you add your thoughts on the CLE and any
amusing events that happened during it.

I will send the usual 'Any More Logs?' email at about 17:00 UTC on Tuesday
so you can check that your log has been found OK. Do make sure that your
log has arrived on the list by 08:00 UTC on Wednesday 28th June at the
very latest.
I’m so grateful to Joachim who will again be making the combined results for
us.

As usual, you can get further helpful information about this and past CLEs
via Alan's CLE Information Section, http://www.ndblist.info/cle.htm
CLE107 was our last CLE rather like this one - way back in July 2008!

Good listening
Brian
----------------------------------------------------------
From: Brian Keyte G3SIA ndbcle@gmail.com
Location: Surrey, SE England (CLE coordinator)
----------------------------------------------------------

(Reminder: If you wish you can use a remote receiver for your loggings,
stating its location and owner - with their permission if required.
NB: THAT RECEIVER must be located within 2 hours of ‘real’ midday.
A remote listener may NOT also use another receiver, whether local or
remote, to obtain further loggings for the same CLE).

These listening events serve several purposes. They:
  • determine, worldwide, which beacons are actually in service and on-the-air so the online database can be kept up-to-date
  • determine, worldwide, which beacons are out-of-service or have gone silent since the last CLE covering this range
  • will indicate the state of propagation conditions at the various participant locations
  • will give you an indication of how well your LF/MF receiving system is working
  • give participants a fun yet challenging activity to keep their listening skills honed

Final details can be found at the NDB List website, and worldwide results, for every participant, will be posted there a few days after the event. If you are a member of the ndblist Group, results will also be e-mailed and posted there.

The very active Yahoo ndblist Group is a great place to learn more about the 'Art of NDB DXing' or to meet other listeners in your region. It's also a good place to submit your CLE log! There is a lot of good information available there and new members are always very welcome. As well, you can follow the results of other CLE participants from night to night as propagation is always an active topic of discussion.

If you are contemplating getting started on 630m, listening for NDBs  is an excellent way to test out your receive capabilities as there are several NDBs located near this part of the spectrum.

You need not be an ndblist member to participate in the CLEs and all reports, no matter how small, are of much value to the organizers. 

'First-time' logs are always VERY welcome!

Reports may be sent to the ndblist or e-mailed to either myself or CLE co-ordinator, Brian Keyte (G3SIA), whose address appears above.

Please ... give the CLE a try ... then let us know what NDB's can be heard from your location! Your report can then be added to the worldwide database to help keep it up-to-date.

Good hunting!

Wednesday, 14 June 2017

RFI ... Radio Spectrum's Global Warming?

courtesy: http://www.arrl.org/utilities

The FCC's recent publication of an Order and Consent Decree (DA-17-471) has me wondering if this action signals new interest in cracking-down on those who manufacture and distribute unapproved spectrum polluting noise-generating devices or is it just a once-in-awhile muscle flex with little change in overall policy ... hopefully it's the former!

Highlights of the agreed upon notice:

Section 302 of the Act authorizes the Commission to promulgate reasonable regulations to minimize harmful interference by equipment that emits radio frequency energy....Specifically....that “[n]o person shall manufacture, import, sell, offer for sale, or ship devices or home electronic equipment and systems, or use devices, which fail to comply with regulations....

.... the Commission establishes technical requirements for transmitters and other equipment to minimize their potential for causing interference to authorized radio services ... the Commission administers an equipment authorization program to ensure that equipment reaching the market in the
United States complies with the technical and administrative requirements set forth in the Commission’s rules. The equipment authorization program requires, among other things, that radio frequency devices must be tested for compliance with the applicable technical requirements in accordance with one of three authorization procedures—i.e., certification, Declaration of Conformity, or verification—prior to marketing.


... the Rules prohibits the marketing of radio frequency devices unless the device has first been properly authorized, identified, and labeled in accordance with the Rules ...


... a privately-held company that manufactures and distributes lighting fixtures that are used in residential and commercial properties ... under-cabinet LED light fixtures were reportedly causing interference to AM/FM radio transmissions. 

During the course of the investigation, the evidence revealed that ... the LED light fixtures were not tested and authorized under the Commission’s equipment authorization rules prior to marketing.

... the Bureau’s Spectrum Enforcement Division issued a Letter of Inquiry (LOI) ... directing to submit a sworn written response to a series of questions relating to ... the marketing of its LED lighting fixtures in the United States.

... continued to market the light fixtures at issue for certain times during an approximately five-month period after receipt of the LOI.

Other highlights indicate that the company in question acknowledged their violation and agreed to appoint a Compliance Officer in charge of implementing new company protocols, including the retraining and education of employees dealing with compliance issues. As well, a $90,000 civil penalty was imposed on the company for the violation.

As a point of interest, I can't ever recall seeing similar notifications being released or reported here in Canada by our FCC equivalent, the ISEDC. Hopefully they also take similar actions, but if so, they don't seem to be reporting it ... perhaps I'm just not looking in the proper places.

As I've mentioned here previously, for too many radio amateurs, the growing noise floor throughout the radio spectrum has become a global threat for the healthy pursuit of our hobby. Even if we saw the immediate  implementation of rigorous new tight standards, crackdowns and prosecutions of offenders, it may already be too late to reverse the damage we are now seeing ... in many respects, it's the 'global warming' of the RF spectrum and there may be no turning back without immediate action.

Wednesday, 7 June 2017

May Moonbounce / More 6m WSJT Observations

Late May's EME activity seemed poorer and less active than the previous month of northern declination moonrises.

Unlike winter's northern moonrises, the summer ones occur close to 'new moon' time and for a few days on the much favored northern path, the moon is too close to the sun, resulting in lower activity and higher noise. As well, with the warmer summer weather, outdoor projects or other summer activities often take priority over ham radio operations at this time of the year.

Nevertheless, I did manage to work five stations with my small station, and added four 'new initials', bringing my total unique-station QSO total to 105 ... it seems there are still plenty of folks out there that I have yet to work!

  • VE1KG
  • OK1DIX #102
  • S53K #103
  • IK1UWL #104
  • OZ1CT #105

IK1UWL's 4 x 9el cross-polarized array

S53K's 4 x 11el array

OZ1CT's 4 x 10el cross-polarized array

Latest Incoming EME QSLs:


With the summer Sporadic-E season now in full swing, I've had the opportunity to make some early observations regarding the growing use of the weak-signal digital modes. It seems my previous suspicions about the migration from traditional modes to the digital modes is occurring even more rapidly and in much larger numbers than I had expected. Almost all early activity has been concentrated on both JT65 and JT9 modes and most of the chatter on the ON4KST 6m chat page centers around these digital modes.

So far this season I have heard much more DX on JT65 than on CW or SSB, including two stations in Europe on Tuesday (EI4DQ and F5LNU). It seems that many QSO's are taking place with signals that are usually too weak to be heard by ear (~ -16db or weaker) and if listening for CW signals, the band would appear to be pretty much dead. With no full-blown openings to Europe yet, I just wonder if stations will stay put on JT65 or move to the much faster CW mode for making quick contacts when the propagation allows?

Making JT65 contacts is not a particularly fast process, with most QSOs taking a minimum of four minutes, if both operators are well acquainted with the procedures ... longer if not or if QRM or propagation throws a spanner into the works. Some of the newer JT9 sub modes allow for quicker exchanges as does the much less sensitive MSK144 mode but with so many options now available, it's often difficult to get everyone on the same mode or at least figure out what mode you are seeing!

I can see the advantages of using these modes when conditions will not support CW but will still allow digital decodes. If the normal 'weak signal window' can be sustained for a much longer time period than the usually short-lived audible CW-level window, perhaps more stations could actually be worked on these modes even though the QSO rate is much slower. But I still think that many easy CW QSO's will inevitably be missed when operators are watching their digital waterfalls and ignoring the CW end of the band ... of course, if everyone is doing that, then there will be nothing to be heard on CW, even though conditions may well support good signals.

It's a strange new situation and I'm probably not the only one that may be worried about the negative effects of the new weak-signal modes on 6m ... time will tell, but for me, if things keep going along this path, much of 6m's magic may be gone along with it.

Some other initial observations are:

- maybe it's possible to work more DX on weak signal mode, even though it is slower, because of the possibly longer propagation window at sub audible signal levels? ... ie. on a seemingly 'dead band' by ear.

- many are using the wrong sequence when calling for EU or JA. Folks need to pay attention to what sequence the DX is using!

- if your neighbours are running on even or odd sequence, then it might be neighbourly to also use the same sequence to avoid causing disruptive QRM. This seems to go south fast, once the band breaks wide open and it seems like 'every man for himself' ... not unlike 50.125!

- there are too many weak-signal modes and it would be advantageous to settle on a 'standard' mode for 6m DX. It seems as though many are wasting valuable time either switching modes or trying to figure out what mode they are seeing but not decoding! On long haul 6m Es, things change too quickly to waste time.

- there are still a lot of over-driven signals or signals with 60Hz components causing double decodes +/- 60Hz from their main signals.

Saturday, 3 June 2017

Digital Revolution Or Evolution?

courtesy: KD0WTE



A recent reflector posting tended to confirm a rather intriguing trend that I have also been noticing over the past few years.



The poster lamented the fact that he often found very few or even no CW / SSB signals on the HF bands while at the same time seeing lots of activity throughout the digital portion of the bands.

It does seem like there is far less CW and phone activity on the HF bands now, than there was a few years ago and there is no question that digital activity has soared. Whether it's RTTY, PSK31, JT65, WSPR, JT9 or others, these digital signals are always prominent and, band plan or not, are slowly migrating further in the band as activity increases ... but is this the reason for the decline of traditional modes?

The digital weak-signal modes make these extremely popular for a number of reasons. Nowadays, many amateurs are living in antenna-restricted communities and are forced to develop smaller, lower and less effective stealthy antenna systems if they wish to get on the air and make contacts. Most of these modes perform well with minimal amounts of power and are capable of hearing well into the noise ... and unless you live out in the country, with well-separated neighbours, we all know that noise is increasing at horrific levels almost everywhere. These two factors alone might well explain much of the growth in digital activity.

Licencing requirements have also been slowly evolving and today, getting a ticket is much easier than it was several decades ago ... and in many cases, without the requirements of knowing anything about CW. Every month, North Americans see a large number of new amateurs, many with no code skills and possibly not much interest in acquiring them. From my own local observations, most of these new amateurs usually head straight to FM on the VHF/UHF bands and have little knowledge of or interest in HF radio. These factors must also play into the demise of activity on the traditional HF modes as well.

We also shouldn't overlook the influence that Old Sol is having on our HF bands as well. Solar Cycle 24 (begun in 2008) has been one of the poorest on record and continues to generate month after month of terribly poor HF propagation. As a young SWL who listened in Cycle 19, (the largest on record), I can vouch for the relationship between HF activity and good propagation. Those were amazing days, when 20 and 15m would stay open all night long ... even 10m would often still be open with F2 propagation at midnight towards VK and ZL! Everyday, month after month, the bands were simply bulging with activity, from end to end ... high solar flux numbers bring high activity numbers and we are now experiencing the downside effects of what happens when the sun dreadfully underperforms. The only exception to band-bulging activity today seems to be limited to major contest weekends only. Where these people go the rest of the time is a mystery.

There are surely other reasons as well for the gradual decline of traditional-mode HF activity, including the fact that the general ham population is getting older. Large numbers of stations are simply 'going away' as interest or opportunity declines and as more of the aging traditional-mode ops go 'SK'. I know of several hams that have just given-up because of insurmountable increases in their local noise floors. Our new and usually younger hams, have largely grown up in the 'digital age' and for those that do find themselves exploring the HF bands without CW skills, might logically settle into the digital modes first.

Things are changing quickly, of that there is no doubt. Last summer, on 50MHz, I noticed a large increase in the number of dedicated CW operators moving to JT65 and JT9 during openings and this summer has already seen another huge migration from one mode to the other.

Although this year's Sporadic-E season is just getting started, I have already heard many more countries on JT65 than I have on the traditional modes (Japan, Philippines, China, Formosa, Alaska, Venezuela, Cuba, Brazil). Yesterday I listened to a PY calling CQ on CW for some length, with no takers, while it seemed most of the usual west coast ops were watching the digital band. I fear that many good QSO possibilities will be lost as more stations switch to the much slower digital modes ... on 6m, many of the openings last for a very short time making CW or SSB the quickest way to complete a contact. The other problem I notice this summer is that there are several JT sub-modes and it is often difficult or impossible to figure out which mode is being used let alone having the time to switch to the other mode before signals are gone ... perhaps a case of having too much of a 'good thing'? Hopefully one mode will emerge as the '6m standard' so all are on the same page.

What will be the long-term outcome of these changes remains to be seen but I suspect we'll see more and more of our HF CW and SSB spectrum space gradually shrinking to make room for more digital activity, likely to become the dominant modes eventually.

As a life-time, almost exclusive CW operator since age 15, I find this somewhat disheartening but must admit that over the past few years, I have found my own level of weak-signal digital activity increasing by leaps and bounds. These are powerful, capable modes and offer amateurs new and exciting challenges from VLF to nanowaves. Are they as exciting as my much-loved CW? Ask me in a couple of years!

Tuesday, 30 May 2017

CLE 219 Results


As originally feared, MF conditions took a nasty beating this weekend during the monthly CLE .

It's really amazing how closely synced to terrible conditions the CLE's have become ... perhaps we need to offset our monthly activity by staging the next one in two weeks to see if we break out of sync with the Sun's regular 27-day rotation of coronal hole streaming.

Friday night was the best, much better than most other regions in North America from what I could tell as the geomagnetic storm had not yet struck ... but most others suffered from severe thunderstorm noise further to the south and east of BC.

Once the geomagnetic storm was underway, the DST quickly tanked and both Saturday and Sunday nights saw a shroud of absorption thrown over the NDB band, at times making me wonder if I even had an antenna connected to the receiver. I haven't seen such poor conditions on MF in several years.

courtesy: http://wdc.kugi.kyoto-u.ac.jp/

courtesy: http://www.noaa.gov/


Fortunately, the following stations were heard on Friday night, before the storm, using my Perseus SDR and LF / MF inverted-L resonated to ~350 kHz:

27 06:00 350.0 SWU Sweden - Id Falls, ID, USA
27 11:00 350.0 RG Oklahoma City, OK, USA
27 05:00 350.0 NY Enderby, BC, CAN
27 08:00 351.0 YKQ Waskaganish, QC, CAN
27 06:00 353.0 RNT Renton, WA, USA
27 06:00 353.0 PG Portage La Prairie, MB, CAN
27 12:30 353.0 LLD Lanai Island, HWA
27 06:00 353.0 IN Ericsburg, MN, USA
27 11:00 353.0 DI Dickinson, ND, USA
27 11:00 353.0 AL Dixie, WA, USA
27 06:00 356.0 ZXE Saskatoon, SK, CAN
27 10:00 356.0 ZF Yellowknife, NT, CAN
27 11:00 356.0 PND Portland, OR, USA
27 05:00 356.0 ON Penticton, BC, CAN
27 11:00 356.0 MEF Medford, OR, USA
27 10:00 358.0 SIT Sitka, ALS
27 10:00 359.0 YQZ Quesnel, BC, CAN
27 10:00 359.0 YAZ Tofino, BC, CAN
27 10:00 359.0 SDY Sidney, MT, USA
27 06:00 359.0 BO Ustick, ID, USA
27 08:00 362.0 RPX Roundup, MT, USA
27 08:00 362.0 BF Seattle, WA, USA
27 10:00 362.0 6T Foremost, AB, CAN
27 10:00 365.0 MA Mayo, YT, CAN
27 05:00 365.0 DPY Deer Park, WA, USA
27 06:00 365.0 AA Harwood, MN, USA
27 07:00 366.0 YMW Maniwaki, QC, CAN
27 11:00 368.0 ZP Sandspit, BC, CAN
27 10:00 368.0 VX Dafoe, SK, CAN
27 11:00 368.0 SX Skookum - Cranbrook, BC, CAN

Wednesday, 24 May 2017

Hunting For NDBs In CLE 219

YMW-366 Maniwaki, QC courtesy: VE3GOP




This coming weekend will see another CLE challenge. This time the hunting grounds will be:  350.0 - 369.9 kHz.






For those unfamiliar with this monthly activity, a 'CLE' is a 'Co-ordinated Listening Event', as NDB DXers around the world focus their listening time on one small slice of the NDB spectrum.

A nice challenge in this one is to hear the Maniwaki  NDB, 'YMW', on 366 kHz. It's a 500-watter and is well heard, having been logged from Europe to Hawaii and is a good propagation indicator for listeners in western North America. Look for 'YMW' on 344.401 kHz.

I see a forecast of a possible CME impact sometime Friday, right on schedule for the CLE event! Sometimes these help but usually not. At this time of the year it's usually not the propagation causing problems but rather, the lightning activity and its associated QRN. A good place to check lightning activity in realtime is at the Blitzortung website.

When tuning for NDBs, put your receiver in the CW mode and listen for the NDB's CW identifier, repeated every few seconds. With your receiver in the CW mode, listen for U.S. NDB identifiers approximately 1 kHz higher or lower than the published transmitted frequency since these beacons are tone-modulated with a 1020 Hz tone approximately.

For example, 'AA' in Fargo, MN, transmits on 365 kHz and its upper sideband CW identifier is tuned at 366.025 kHz while its lower sideband CW ident can be tuned at 363.946 kHz. Its USB tone is actually 1025 Hz while its LSB tone is 1054 Hz.

Often, one sideband will be much stronger than the other so if you don't hear the first one, try listening on the other sideband.

Canadian NDBs normally have an USB tone only, usually very close to 400 Hz. They also have a long dash (keydown) following the CW identifier.

All NDBs heard in North America will be listed in the RNA database (updated daily) while those heard in Europe may be found in the REU database. Beacons heard outside of these regions will be found in the RWW database.

From CLE organizer Brian Keyte, G3SIA, comes the usual 'heads-up':

Our 219th Co-ordinated Listening Event is almost here.
Can new 'listening eventers' join in too? YES, PLEASE! I'm always
pleased to help first-time CLE logs through the harvester program.

Days: Friday 26 May - Monday 29 May
Times: Start and End at midday, your LOCAL time
Range: 350.0 - 369.9 kHz

Please log all the NDBs you can identify that are listed in this range (it
includes 350 kHz but not 370) plus any UNIDs that you come across there.
You can find full information to help you, including seeklists made from
RNA/REU/RWW, at the CLE page http://www.ndblist.info/cle.htm

Please send your 'Final' CLE log to the List, if possible as a plain text
email and not in an attachment, with 'CLE219' at the start of its title.
Please show the following main items FIRST on EVERY line of your log: The full Date (e.g. 2017-05-26) or just the day number (e.g. 26)
and UTC (the day changes at 00:00 UTC).
# kHz - the beacon's nominal published frequency, if you know it.
# The Call Ident.

Optional details such as Location and Distance go LATER in the same line.
If you measure LSB/USB offsets and cycle times they are useful too.

Please always include details of your own location and brief details of the
receiver, aerial(s) and any recording equipment you were using, etc.

I will send the usual 'Any More Logs?' email at about 17:00 UTC on Tuesday
so you can check that your log has been found OK.
Do make sure that your log has arrived at the very latest by 08:00 UTC on
Wednesday 31 May. I hope to make all the combined results on that day.

Good listening
Brian
----------------------------------------------------------
From: Brian Keyte G3SIA ndbcle'at'gmail.com
Location: Surrey, SE England (CLE co-ordinator)
----------------------------------------------------------

(Reminder: If you wish you can use a remote receiver for your loggings,
stating its location and owner - with their permission if required.
Sometimes a listener has local problems and can only take part that way.
A remote listener may NOT also use another receiver, whether local or
remote, to obtain further loggings for the same CLE).


These listening events serve several purposes. They:
  • determine, worldwide, which beacons are actually in service and on-the-air so the online database can be kept up-to-date
  • determine, worldwide, which beacons are out-of-service or have gone silent since the last CLE covering this range
  • will indicate the state of propagation conditions at the various participant locations
  • will give you an indication of how well your LF/MF receiving system is working
  • give participants a fun yet challenging activity to keep their listening skills honed

Final details can be found at the NDB List website, and worldwide results, for every participant, will be posted there a few days after the event. If you are a member of the ndblist Group, results will also be e-mailed and posted there.

The very active Yahoo ndblist Group is a great place to learn more about the 'Art of NDB DXing' or to meet other listeners in your region. It's also a good place to submit your CLE log! There is a lot of good information available there and new members are always very welcome. As well, you can follow the results of other CLE participants from night to night as propagation is always an active topic of discussion.

If you are contemplating getting started on 630m, listening for NDBs  is an excellent way to test out your receive capabilities as there are several NDBs located near this part of the spectrum.

You need not be an ndblist member to participate in the CLEs and all reports, no matter how small, are of much value to the organizers. 

'First-time' logs are always VERY welcome!

Reports may be sent to the ndblist or e-mailed to either myself or CLE co-ordinator, Brian Keyte (G3SIA), whose address appears above.

Please ... give the CLE a try ... then let us know what NDB's can be heard from your location! Your report can then be added to the worldwide database to help keep it up-to-date.

Good hunting!

__._,_.___

Sunday, 21 May 2017

MFJ-1026 Noise Canceller Tests At VA7MM

courtesy: www.mfjenterprises.com/

Mark, VA7MM, has been testing out his newly-acquired MFJ-1026 Noise Canceller and has provided several videos of the noise canceller in action.


Like so many other hams, Mark's suburban location has seen a gradually rising noise floor and the noise heard in this video is from an off-site location within his local neighbourhood, located about 400m away.

The noise canceller requires a separate 'noise antenna' in order to cancel any noise on the main receiving antenna and for all of the tests shown below, Mark's noise antenna was a Cushcraft R-7 vertical while using an Icom IC-7600 transceiver for listening.

Test 1 shows the noise canceller being used while listening to a broadcast station on 6.0 MHz:


Test 2 shows the canceller's effect on raw noise while viewing in Spectran:


Test 3 shows the canceller's effect on a 40m CW signal:


Test 4 shows the effect of just the IC-7600's noise blanker on the offending noise:


Mark's comments:

Living in the noise cloud one must resort to special measures to use affected portions of spectrum. I recently purchased an MFJ-1026 noise canceller and have been testing the unit and have attached videos demonstrating the unit’s performance. You will see examples of raw noise, SW broadcast and 40 m CW signals with the unit being switched in and out. Also for comparison is the noise blanker in the IC-7600 failing to eliminate the same noise. 
 
Conclusions:
 
- the unit is able to eliminate noise in most instances when adjusted properly
 
- the noise sense antenna is critical and several different switchable noise sense antennas may be required for good performance
 
- setting up on AM mode with Spectran helps with fine adjustment
- it outperforms the radio’s noise blanker in all cases tested

With proper tuning and set up, it looks like the MFJ-1026 can make a worthwhile improvement in unwanted noise reduction.  Mark will also be testing and comparing a Timewave ANC-4 Noise Canceller with the MFJ and any videos received will be published here.

Monday, 15 May 2017

The G3XBM Experimental Blogs

G3XBM's 5W Earth-Mode Tx (courtesy: G3XBM)






My interest of late has been piqued by the ongoing VLF experimental work by several European amateurs.








Recalling that Roger, G3XBM, did some VLF experimenting a few years ago, I have been reviewing some of the excellent hands-on information gathered and published in his ham radio blog and to some of his other VLF pages.

It's not the first time that I have found project-inspiring reading within Roger's blogs. They really are a treasure-trove of useful information, construction notes and accumulated test data gathered from his methodical approach to so many interesting topics ... experimental amateur radio at its very best.

A few years ago I was immediately hooked by his experimental lightwave work, both line-of-sight and clear-air / cloudbounce scatter ... so much so that I also became involved in some lightwave work with other locals who were also inspired by Roger's information, culminating in our own West Coast Lightwave Adventure.

Roger's VLF experiments are also proving hard to resist, especially those of the earth-mode type and I may find myself falling victim to his detailed Sub 9kHz Amateur Radio pages and the Earth Mode pages in particular.

It seems that most amateur VLF work is being done in the vicinity of 8kHz since this part of the frequency spectrum is unassigned. I gather that one can conduct earth-mode tests in any portion of the VLF spectrum since no signal is being 'radiated' as is typically done via antennas. Further investigation remains to see if I need a 'developmental licence' to conduct some radiated (non-earth-mode) experiments in the 8kHz range as well.

Getting a VLF signal from here on Mayne Island across Georgia Strait via earth-mode or via conventional methods would make an interesting challenge and would certainly result in some new homebrewing opportunities.

courtesy: https://www.google.ca/maps

Here on the island, I often hear audio associated with the container terminal and ship-loading operations near Tsawwassen, directly across the strait from here. I feel that this may be aided somewhat by the solid sandstone of the island being directly connected to the other side, so perhaps an earth-mode system utilizing the ocean as one-leg of a buried loop might be an interesting experiment to tackle ... or groundwave transmissions across the ocean via an antenna, to the other side, providing I could find someone to listen.

I see just two Canadian amateurs experimenting on VLF ... VO1NA (Joe) and VA3VVV (John) near Toronto. Any VE3's in the area who are interested in VLF may wish to contact John and exchange notes. He has a Facebook page showing his VLF setup. Interestingly, Joe's 30W VLF signal on 8.270 kHz has just crossed the Atlantic! Joe is documenting his VLF experiments here.

All of G3XBM's VLF blogs can be downloaded for reading or for printing via this link. Similarly, his lightwave experiments can all be found here ... both links will yield several pages of material if you click on the 'Older Posts' link at the bottom of each page.

The best way to follow these is chronologically which requires going all the way to the end of the final 'OlderPost' link and follow along with Roger as he gradually develops, evaluates and improves the gear that he needs to make progress. This is fascinating reading.

But be suitably warned ... you may readily fall victim to his experimental work as well and suddenly find yourself with another exciting project!

Wednesday, 10 May 2017

May's 'Red Ryder' EME Ops

There still seems to be a number of 'big guns' showing up each month, that I have not heard or worked before as well as several 2-Yagi 'little pistols' that I am able to work under very good lunar path conditions. I suspect that having just 1-Yagi puts me in the $2.95 'Red Ryder' category!



With the QSL's from last month's surprisingly good EME conditions just starting to arrive, May's moonbounce operation continued to produce good results.







Whether this is because of better than normal lunar path conditions or just a result of my neighbour's tree-pruning, remains to be seen.

The few days of operating in early May were, as usual, planned to take advantage of the Moon's closest approach as well as the Moon's most northerly declinations. The latter condition puts moonrises directly out in front of the house and looking across Georgia Strait's many miles of saltwater. The extra theoretical 'sea-gain' appears to be a reality under these conditions and allows my 9el Yagi to garner another 6db on both transmit and receive paths, making it perform more like a '4-Yagi' array.

Eight stations were worked this time around, with six of them being new 'initials', bringing my EME total from 95 to 101. Several of these stations were speaker-audible, at CW levels.

          NTØV #96
          IK7EZN #97
          EA2AGZ #98
          G4SWX
          F6HVK #99
          G4CDN #100
          DK5LA #101
          DK3BU

IK7EZN's cross polarized 4 x 13 array    

EA2AGZ's 4 x 16 array

DK5LA's cross polarized 8 x 16 array ...very loud!

For now, any earlier thoughts of building a 4CX250 300 watt amplifier have been put on hold, while I continue to slowly work my way through what seems a never-ending list of workable stations.

Friday, 5 May 2017

LF / MF News From Monitor Sensors





A note from Roger, VK4YB of Monitor Sensors, reports some interesting news.








You might recall that his company manufactures a very versatile and well-engineered 630m transverter which was used at both ends of our two 630m JT9 contacts last year during the fall equinox propagation peak between North America and down-under.

Roger now reports that Monitor Sensors will be producing a new 2200m transverter, with all of the bells and whistles found on the 630m unit which has proven to be a real workhorse.


Monitor Sensors 2200m Transverter

The Monitor Sensors TVTR2 2200m Transverter enables any Amateur Radio Station, equipped with a conventional HF transceiver, immediate, all mode, access to the new 135.7-137.8 kHz, 2200m band.
The receiver design incorporates a 7pole Chebyshev filter, 3kHz wide roofing filter and a 5 pole Chebyshev filter in cascade before the double balanced, commutating mixer, fed by an ultra stable, temperature compensated, extremely low phase noise, MEMS local oscillator. The mixer is followed by a Chebychev band pass filter into an ultra linear, low noise, current feedback, IF amplifier. The receiver noise floor, in a 500Hz bandwidth, is -125 dBm and yet the onset of compression is not reached until +11dBm. A front end 20dB attenuator can be switched in for even higher signal handling. Overall receiver gain is set to +6dB, or -14dBm with attenuator in.


The transmitter input circuit incorporates a 0-14 dB switched step attenuator to prevent over driving. The same mixer and local oscillator are used on the transmit side. The PA uses 6 rugged lateral FETs in class AB push-pull to easily achieve the 50 watts rated output. Lateral FETs are inherently linear and thermally stable. The transmitter can be run at full power, indefinitely, into a dead short or open circuit without any danger of damaging the FETs. Transmit-receive switching is automatic with user selectable VOX delay. Alternatively the PTT line may be used.


The transverter employs extensive and accurate metering. Power input and output, SWR, Frequency, Attenuation in use, Temperature, Supply Voltage, Current and Resistance are displayed.
Transmission is inhibited if carrier frequencies outside the 135.7-137.8 kHz band are detected. A tuning screen may be selected which displays SWR in digital and graphical form for easy antenna adjustment. The menu system is self explanatory and users report no manual is needed, although one is supplied. A USB socket is provided for future code upgrades (free of charge) from the Monitor Sensors web site.


The transverter has been designed for the best possible protection against accidental mishaps. It will survive reverse polarity supply and the injection of 100 watts of HF into any of its ports whether in transmit or receive mode. If supply current exceeds 25 Amps, the supply is cut in 3 microseconds. This electronic breaker can be reset by simply switching off and on again. The transmitter will shut down in the unlikely event that the internal heat sink reaches 90°C. The cooling fan is under the proportional control of the microcomputer and begins operation above 35°C. Any unusual operation will cause the screen to turn red and an appropriate warning will be displayed.


TVTR2 Specifications


RF frequency range 135.7 to 137.8 kHz
IF frequency range 1805.7 to 1807.8 kHz (others available in the 160m band)
Transmission modes CW, SSB, WSPR, and all other data modes
Output Power 50 Watts Continuous, 100% duty cycle @13.8V supply
Input and Output Impedance 50 Ohms
Supply voltage 13.8 VDC @ 15 Amps nominal, 10-16 VDC operational
Rx noise floor -125 dBm (500 Hz bandwidth)
Rx 3dB compression point +15 dBm (Rx attenuator out)
Rx IF rejection better than 75dB
Rx conversion gain +6dB nominal
Roofing filter in-band ripple +/- 0.5dB
Tx 3rd order IMD -33 dB below PEP, typical at 50W output
Tx 5th order IMD -45dB below PEP, typical at 50W output
Tx harmonics and spurii All better than -50dB
Tx conversion gain +10dB nominal
Power input connector 2 * Anderson Power Poles (one Power cable supplied)
RF connectors 3 * SO239 (one PL259 to PL259 cable supplied)
PTT connectors 2 * RCA (one RCA to RCA cable supplied)
USB connector Micro B USB, (matching cable supplied)
Dimensions 12½ * 4¼ * 3 inches, 320 * 120 * 76 mm
Weight 3.4 lbs, 1.6 kg


In addition to the transverters, Monitor Sensors will also be manufacturing solid state amplifiers for both the 2200m and 630m bands with power levels at around the 450W output level. Like the transverters, these will be 'linear' devices as well. It is possible that a duo-band amplifier will also eventually be produced.

It will be interesting to see if any other new gear becomes commercially available from other manufacturers once the LF / MF ham bands are introduced in the U.S.A. , something that is expected to happen fairly soon.

Sunday, 30 April 2017

The May 'Bug Roundup'

Vibroplex "Blue Racer"



Ever since earning my ticket as a teenager back in '63, almost all of my on-air activity has been focused on CW ... I've always loved it.




For my first year on-the-air, I used a nice brass hand key purchased locally for just a few dollars but once I had mastered that and I was just unable to send any faster with it, I purchased a Vibroplex 'Original', for, if memory serves me correct, around $40. I used it exclusively until building a homebrew memory keyer in the mid-70's and the Vibroplex saw little service for several years.

The Vibroplex 'Original'
Back when I first got on the air there were very few amateurs using keyers. Most used bugs and the remainder used the brass hand pumps. It was very easy to tune across the band and identify any of the locals just by the sound of their fist ... like snowflakes, no two were the same. The same went for most stations that were very active. DX or otherwise, one could usually tell who it was long before the callsigns were heard.
So much has changed now with the almost exclusive use of electronic keyers and everyone pretty much sounds the same, which is rather a pity I think.

Once my interest in building vintage-style vacuum-tube transmitters evolved, my interest in bugs was reactivated and over the years I have purchased a few more.

I'll do anything I can to promote and encourage the use of CW and especially hand-generated CW. That's why I was excited to read a recent e-mail from W6SFM, posted to several lists that I read, announcing the Bug Roundup!
 
The Samuel F. Morse Amateur Radio Club, a Sacramento, California based CW enthusiast club wanted a special time to bring bug operators together on the air. In the same spirit as ARRL's Straight Key Night, participants are encouraged to make simple, conversational, “chewing-the-fat”, "Rag Chew" QSOs using their bug type key. This is an opportunity to exercise, share and exhibit your personalized fist. This is NOT a contest. Simply Call "CQ BR" so folks know you are a Bug Roundup Participant. Grab that bug, clean those contacts, and let’er fly! Let’s hear that “Banana Boat / Lake Erie Swing" or that commercial KPH/WCC quality fist.

Reserve the day! Saturday May 20th - Sunday May 21st, 2017
7:00 AM to 7:00 AM Pacific Time (LOCAL)
1400 UTC through 1400 UTC

For more information, to register your station and key for participation, and to help assist in spotting, potentially increasing QSOs, an On-line chat window link can be found near the bottom of Bug Roundup home page located at http://www.w6sfm.com/Bug_Roundup.html We hope to hear you all on the air!

It looks like a fun event and might make another good reason to fire-up your old boatanchors on CW once again. It looks like you can keep track of activity and possibly set up skeds via their chat-window page during the BR.

In any event, my biggest decision will be to choose which bug to use as I have five at last count. I think I'll be brave and try the Blue Racer but will probably have to dampen it down a bit as they are really quite fast.

Thursday, 27 April 2017

LF / MF Antenna Planning

courtesy: Chuck Roblin

For U.S. amateurs, the 2200 and 630m bands will soon be a reality and I have no doubt that there will be an accompanying surge in interest among large numbers of homebrewers and low band diehards.



It should be an exciting time as new stations gradually start to populate the band from coast to coast.

High on the 'to do' list will be the planning and building (or modifying) of a suitable antenna system for the band(s) of choice. For most, this will be new territory, but the reality is that there has been a long tradition of operation in the LF and MF bands in the U.S. for many years ... all under the Part 15 'Lowfer' and 'Medfer' service.

Although activity in this category has fallen off over the years due to the availability of the much less-restrictive Part 5 experimental licences, there is still a great legacy of literature and information left behind that is every bit as useful today as it was back in the golden years of Lowfer operations.

Here is one such document from Stephen McGreevy's Natural ELF-VLF Radio website that many newcomers to these bands may find very helpful as it covers a wide variety of LF antenna-related basics in a down-to-earth manner.

An even more detailed treatise on virtually all aspects of LF and MF antenna topics is that found on Rik, ON7YD's website. His antenna pages can be found here. Although originally developed for the 2200m band, the principles are equally applicable to 630m as well.

Hopefully both of these sources will help you decide how to get a working antenna system up and running on the new bands. And as always, much help is available via the Internet on the Lowfer Reflector, the RSGB LF reflector or on the 600MRG Reflector.

Monday, 24 April 2017

CLE 218 Results

courtesy: https://sdo.gsfc.nasa.gov/
This past weekend's CLE event was, as is so often the case, perfectly timed with the arrival of poor propagation in most parts of the world. This time around, it was particularly bad.

The 'Co-ordinated Listening Event' might more aptly be called the 'Cursed Listening Event' as once again the same large coronal hole (shown above) that has been present for several solar rotations seems to be more disruptive than ever. The subsequent higher than normal solar wind speeds causing widespread auroral conditions and elevated K indices have pretty much made a mess of MF and HF radio for the past several days.

courtesy: http://www.noaa.gov/

NDB-band recordings made with the Perseus SDR for the three-night event turned up very little activity other than a few strange hot-spots. Both 'OIN' in Kansas and 'CC' in California were strong on all three nights! Nothing from eastern Canada was heard and one of Alaska's strongest signals, 'ELF', was barely detected. Only the following few stations were logged:

23 08:00 341.0    ELF  Cold Bay, ALS
22 06:00 338.0    ZU   Whitecourt, AB, CAN
22 06:00 343.0    YZH  Slave Lake, AB, CAN
22 04:00 344.0    YC   Calgary, AB, CAN
22 12:00 338.0    RYN  Tucson, AZ, USA
22 04:00 344.0    XX   Abbotsford, BC, CAN
22 12:00 335.0    CC   Concord, CA, USA
22 10:00 344.0    FCH  Fresno, CA, USA
22 08:00 341.0    OIN  Oberlin, KS, USA
22 04:00 344.0    BKU  Baker, MT, USA
24 08:00 335.0    BK   Brookings, SD, USA
22 04:00 347.0    PA   Prince Albert, SK, CAN
22 08:00 338.0    K    Port Angeles, WA, USA
22 04:00 348.0    MNC  Shelton, WA, USA
22 05:00 341.0    DB   Burwash, YT, CAN

I suspect the this same coronal hole will be with us for several more rotations ... perhaps it's time fool Ol' Sol and stagger our CLE's 28-day cycle so it doesn't continue go sync-up with poor band conditions but somehow I think that Murphy might not be so easily duped!